204 research outputs found

    Understanding and Improving the Performance of Read Operations Across the Storage Stack

    Get PDF
    We live in a data-driven era, large amounts of data are generated and collected every day. Storage systems are the backbone of this era, as they store and retrieve data. To cope with increasing data demands (e.g., diversity, scalability), storage systems are experiencing changes across the stack. As other computer systems, storage systems rely on layering and modularity, to allow rapid development. Unfortunately, this can hinder performance clarity and introduce degradations (e.g., tail latency), due to unexpected interactions between components of the stack. In this thesis, we first perform a study to understand the behavior across different layers of the storage stack. We focus on sequential read workloads, a common I/O pattern in distributed le systems (e.g., HDFS, GFS). We analyze the interaction between read workloads, local le systems (i.e., ext4), and storage media (i.e., SSDs). We perform the same experiment over different periods of time (e.g., le lifetime). We uncover 3 slowdowns, all of which occur in the lower layers. When combined, these slowdowns can degrade throughput by 30%. We find that increased parallelism on the local le system mitigates these slowdowns, showing the need for adaptability in storage stacks. Given the fact that performance instabilities can occur at any layer of the stack, it is important that upper-layer systems are able to react. We propose smart hedging, a novel technique to manage high-percentile (tail) latency variations in read operations. Smart hedging considers production challenges, such as massive scalability, heterogeneity, and ease of deployment and maintainability. Our technique establishes a dynamic threshold by tracking latencies on the client-side. If a read operation exceeds the threshold, a new hedged request is issued, in an exponential back-off manner. We implement our technique in HDFS and evaluate it on 70k servers in 3 datacenters. Our technique reduces average tail latency, without generating excessive system load

    Investigating the nature of the K0∗(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance

    Investigating the nature of the K0∗^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    The first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit--Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance.The first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance

    Investigating the nature of the K0∗(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance

    Investigating the nature of the K0∗(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance

    Investigating the nature of the K0∗(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance

    Characterizing the initial conditions of heavy-ion collisions at the LHC with mean transverse momentum and anisotropic flow correlations

    No full text
    Correlations between mean transverse momentum [pT][p_{\rm T}] and anisotropic flow coefficients v2v_{\rm 2} or v3v_{\rm 3} are measured as a function of centrality in Pb-Pb and Xe-Xe collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and 5.44 TeV, respectively, with ALICE. In addition, the recently proposed higher-order correlation between [pT][p_{\rm T}], v2v_{\rm 2}, and v3v_{\rm 3} is measured for the first time, which shows an anticorrelation for the presented centrality ranges. These measurements are compared with hydrodynamic calculations using IP-Glasma and TRENTo\rm T_{R}ENTo initial-state shapes, the former based on the Color Glass Condensate effective theory with gluon saturation, and the latter a parameterized model with nucleons as the relevant degrees of freedom. The data are better described by the IP-Glasma rather than the TRENTo\rm T_{R}ENTo based calculations. In particular, Trajectum and JETSCAPE predictions, both based on the TRENTo\rm T_{R}ENTo initial state model but with different parameter settings, fail to describe the measurements. As the correlations between [pT][p_{\rm T}] and vnv_{\rm n} are mainly driven by the correlations of the size and the shape of the system in the initial state, these new studies pave a novel way to characterize the initial state in relativistic heavy-ion collisions

    Measurement of beauty production via non-prompt D0{\rm D}^{0} mesons in Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    The production of non-prompt D0{\rm D}^{0} mesons from beauty-hadron decays was measured at midrapidity (∣y∣5 GeV/c\left| y \right| 5~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions. The data are described by models that include both collisional and radiative processes in the calculation of beauty-quark energy loss in the quark-gluon plasma, and quark recombination in addition to fragmentation as a hadronization mechanism. The ratio of the non-prompt to prompt D0{\rm D}^{0}-meson RAAR_{\rm AA} is larger than unity for pT>4 GeV/cp_{\rm T} > 4~\mathrm{GeV}/c in the 0−100-10% central Pb-Pb collisions, as predicted by models in which beauty quarks lose less energy than charm quarks in the quark-gluon plasma because of their larger mass

    KS0^0_{\rm S}KS0^0_{\rm S} and KS0^0_{\rm S}K±^\pm femtoscopy in pp collisions at s=\sqrt{s}= 5.02 and 13 TeV

    No full text
    Femtoscopic correlations with the particle pair combinations KS0^0_{\rm S}KS0^0_{\rm S} and KS0^0_{\rm S}K±^\pm are studied in pp collisions at s=5.02\sqrt{s}=5.02 and 1313 TeV by the ALICE experiment. At both energies, boson source parameters are extracted for both pair combinations, by fitting models based on Gaussian size distributions of the sources, to the measured two-particle correlation functions. The interaction model used for the KS0^0_{\rm S}KS0^0_{\rm S} analysis includes quantum statistics and strong final-state interactions through the f0(980)f_0(980) and a0(980)a_0(980) resonances. The model used for the KS0^0_{\rm S}K±^\pm analysis includes only the final-state interaction through the a0a_0 resonance. Source parameters extracted in the present work are compared with published values from pp collisions at s=\sqrt{s}= 7 TeV and the different pair combinations are found to be consistent. From the finding that the strength of the KS0^0_{\rm S}KS0^0_{\rm S} correlations is significantly greater than the strength of the KS0^0_{\rm S}K±^\pm correlations, the new results are compatible with the a0a_0 resonance being a tetraquark state of the form (q1,q2‟,s,s‟)(q_1,\overline{q_2}, s, \overline{s}), where q1q_1 and q2q_2 are uu or dd quarks

    Measurement of the production of (anti)nuclei in p–Pb collisions at <math altimg="si1.svg"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi mathvariant="normal">NN</mi></mrow></msub></mrow></msqrt><mo linebreak="goodbreak" linebreakstyle="after">=</mo><mn>8.16</mn><mspace width="0.25em"/><mtext>TeV</mtext></math>

    No full text
    International audienceMeasurements of (anti)proton, (anti)deuteron, and (anti)3He production in the rapidity range −1&lt;y&lt;0 as a function of the transverse momentum and event multiplicity in p–Pb collisions at a center-of-mass energy per nucleon–nucleon pair sNN=8.16TeV are presented. The coalescence parameters B2 and B3, measured as a function of the transverse momentum per nucleon and of the mean charged-particle multiplicity density, confirm a smooth evolution from low to high multiplicity across different collision systems and energies. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons are also reported as a function of the mean charged-particle multiplicity density. A comparison with the predictions of the statistical hadronization and coalescence models for different collision systems and center-of-mass energies favors the coalescence description for the deuteron-to-proton yield ratio with respect to the canonical statistical model
    • 

    corecore